Triethylenetetramine pharmacology and its clinical applications.
نویسنده
چکیده
Triethylenetetramine (TETA), a Cu(II)-selective chelator, is commonly used for the treatment of Wilson's disease. Recently, it has been shown that TETA can be used in the treatment of cancer because it possesses telomerase inhibiting and anti-angiogenesis properties. Although TETA has been used in the treatment of Wilson's disease for decades, a comprehensive review on TETA pharmacology does not exist. TETA is poorly absorbed with a bioavailability of 8 to 30%. It is widely distributed in tissues with relatively high concentrations measured in liver, heart, and kidney. It is mainly metabolized via acetylation, and two major acetylated metabolites exist in human serum and urine. It is mainly excreted in urine as the unchanged parent drug and two acetylated metabolites. It has a relatively short half-life (2 to 4 hours) in humans. The most recent discoveries in TETA pharmacology show that the major pharmacokinetic parameters are not associated with the acetylation phenotype of N-acetyltransferase 2, the traditionally regarded drug acetylation enzyme, and the TETA-metabolizing enzyme is actually spermidine/spermine acetyltransferase. This review also covers the current preclinical and clinical application of TETA. A much needed overview and up-to-date information on TETA pharmacology is provided for clinicians or cancer researchers who intend to embark on cancer clinical trials using TETA or its close structural analogs.
منابع مشابه
A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches
Punica granatum (Pg), commonly known as pomegranate (Pg), is a member of the monogeneric family, Punicaceae, and is mainly found in Iran which is considered to be its primary centre of origin. Pg and its chemical components possess various pharmacological and toxicological properties including antioxidant, anti-inflammatory (by inhibiting pro-inflammatory cytokines), anti-cancer and anti-angiog...
متن کاملA Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches
Punica granatum (Pg), commonly known as pomegranate (Pg), is a member of the monogeneric family, Punicaceae, and is mainly found in Iran which is considered to be its primary centre of origin. Pg and its chemical components possess various pharmacological and toxicological properties including antioxidant, anti-inflammatory (by inhibiting pro-inflammatory cytokines), anti-cancer and anti-angiog...
متن کاملTriethylenetetramine and metabolites: levels in relation to copper and zinc excretion in urine of healthy volunteers and type 2 diabetic patients.
Triethylenetetramine (TETA), a selective Cu(II)-chelator used in the treatment of Wilson's disease, is now undergoing clinical trials for the treatment of heart failure in diabetes. Despite decades of clinical use, knowledge of its pharmacology in human subjects remains incomplete. Here, we first used liquid chromatography-mass spectrometry (LC-MS) to detect and identify major metabolites of TE...
متن کاملTriethylenetetramine reduces some blood parameters in alloxan-induced diabetes mellitus in New Zealand white rabbit: evidence for histopathologic effects
This study aimed to assess whether the triethylenetetramine (TETA) is impressed the plasma level of homocysteine (Hcy), total sialic acid (TSA) and cardiac troponin I (cTnI) as cardiovascular diseases risk factors, cystatin c (Cys c) and glucose along with histopathologic changes in alloxan induced diabetes mellitus in rabbit. Twenty number New Zealand white rabbits were assigned for this study...
متن کاملTriethylenetetramine penta- and hexa-acetamide ligands and their ytterbium complexes as paraCEST contrast agents for MRI.
The ligand triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetamide (ttham) was synthesized with the aim of forming lanthanide complexes suitable as contrast agents for magnetic resonance imaging applications utilizing the chemical exchange-dependent saturation transfer (CEST) effect. It was designed to exclude water molecules from the first coordination sphere and provide a high number of CEST ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 9 9 شماره
صفحات -
تاریخ انتشار 2010